
since they have a convexity opposing the normal displacements to the middle surface caused 
by the thermal loads and a continuous change in the principal radius of curvature along the 
meridian. 

NOTATION 

1 3 T, temperature; x , x , coordinate system axes coupled normally to the shell middle sur- 
face; ql. q3, contravariant components of the thermal flux density vector in the x I and x 3 
directions, respectively; g, determinant of the metric form; c, specific heat; p, density; 
To, initial temperature; 0+, air temperature; @_, temperature of the medium washing over the 
shell at the boundary F_; a+, a2, ~-, heat elimination coefficients to the boundaries F+, F2, 
F_; At, time period between the beginning of slag pouring and the time of its termination. 

LITERATURE CITED 

i. I.N. Vekua, Theory of Thing Variable-Thickness Shallow Shells [in Russian], Metsniereba, 
Tbilisi (1965). 

2. V. I. Gulyaev, V. A. Bazhenov, and P. P. Lizunov, Nonclassical Shell Theory and Its Ap- 
plication to the Solution of Engineering Problems [in Russian], Vishcha Shkola, Lvov 
(1978). 

3. Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], 
Naukova Dumka, Kiev (1978). 

4. A.A. Samarskii and E. S. Nikolaev, Methods of Solving Mesh Equations [in Russian], Nauka, 
Moscow (1978). 

SOLUTION OF THE INVERSE COEFFICIENT PROBLEM OF HEAT CONDUCTION 

A. A. Goryachev and V. M. Yudin UDC 536.24.02 

An effective algorithm is developed for solving the inverse coefficient problem of 
heat conduction. Methods are proposed for improving the nonuniform convergence of 
the solution at the domain boundaries. 

In the past decade the problem of determining the thermophysical characteristics of 
materials in nonstationary heating regimes has attracted the considerable attention of re- 
searchers. This is related primarily to the impossibility of determining the ~entioned 
characteristics by classical methods in a number of cases of practical importance, for 
example, for coking materials, as well as to the possibilities being disclosed here of a 
substantial rise in the productivity and simplification of experimental investigations. How- 
ever, serious difficulties associated with the necessity to solve inverse coefficient problems 
of heat conduction occur here. The development of methods to solve these problems was 
studied in [i-i0]. 

In conformity with [i, 2], and using the method proposed in [ii] to calculate the gradi- 
ent of the functional of the quadratic residual of experimental and computed temperatures, 
an effective algorithm to solve the inverse coefficient problem of heat conduction is given 
in this investigation which would assure good accuracy in determining the heat conduction co- 
efficient %I(T) and the specific heat c(T). 

Let us consider the solution of the inverse problem for an infinite plate. In order not 
to limit the possibilities of the experiment we consider that boundary conditions of the 
first, second, and third kinds can be given on the plate surfaces. The temperature distri- 
bution in the plate will hence be described by the equation 

OT OT Q%(T)O-~x ), O ~ x ~ 6 ,  0 " ~ t ~ l  e (1) 
' c (T )o  Ot - -  Ox 
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with the boundary conditions 

OT I = ~ (0 T (0, t ) - -  ,~ (t), q )~ ( T) -~x  ~=o 

OT "x=~ 
ro% (T) -~x  = --  ~ (t) T (6, t) + ,  (t) 

O < t ~ t e  (2) 

and the initial distribution 

T(x, 0)=To(x), 0~<x~6.  (3) 

The coefficients r~, r2 that take on the values 0 or i, and the functions a(t), ~(t), ~(t), 
~(t) assure the possibility of giving arbitrary boundary conditions of the types mentioned on 
the plate surfaces. 

To determine the unknown thermophysical characteristics, let there be additional informa- 
tion in the form of experimental curves of the temperature change in K at points of the plate 

T e(&,  t )= T e(t), k =  1, 2 . . . . .  K. (4) 

From the viewpoint of the mathematical formulation of the inverse problem it is sufficient 
to give the additional information at one point. However, because of the inevitable errors in 
determining the position of a point, in the temperature measurement, and because of the sub- 

stantial dependence of the solution of inverse problems on errors in the initial data, it is 
expedient to use the greatest possible quantity of information in order to assure a statistical 

diminution in the influence of these errors on the solution being obtained. 

It should also be noted that if (i) and the boundary conditions (2) are homogeneous in 

I and c, then the dependences I(T) and c(T) can be determined only to the accuracy of a con- 
stant factor, To obtain a single-valued solution in the simultaneous determination of I(T) 

and c(T), additional conditions are necessary, giving the magnitude of one of the charac- 

teristics in at least some one point of the temperature domain under consideration, or inhomo- 
geneous boundarY conditions in I and c on one of the surfaces. 

Assuming that the mentioned single-valuedness requirements are satisfied, the problem of 
determining I(T) and c(T)can be formulated from the condition of the best approximation of 

all available sets of experimental data by the solution of problem (1)-(3). Since the experi- 

mental values of the temperature contain random errors of measurement and decoding, it is 
expedient to take the magnitude of the root-mean-square deviation of the measured value from 
the computed values of the temperature as a measure of the approximation. 

We then obtain for I(T) and c(T) 

1 x % 
S = -K 'e ' ~  f ~th [T (x~, t ) -  T~(t)]' d t  = rain, (5) 

X ,f p,~dt ~ -  o 
J 

k ~ l  0 

where ~k = ~(Xk, t) are given weight factors characterizing the confidence and informativeness 
of the experimental data. 

The functions I(T) and c(T) that communicate the minimum to the functional (5) will in- 

deed be the desired temperature dependences of the thermophysical characteristics of the tem- 

perature under investigation. The finite-dimensional representation of the functions being 
determined 

~.(T)= ~.(Za, ~2 . . . . .  ~'N)' c (T )=  c(c,, c~ . . . . .  c M) (6) 

permits reduction of the problem to seeking the minimum of the function S(~, ..., I N , ci, 

..,, c M) with respect to the finite (N + M) number of variables, the parameters of the repre- 
sentation taken. 

It is desirable to select the form of the finite-dimensional representation in con- 
formity with a priori information about the behavior of the functions being sought. In the 
general case, there is no such information, and consequently, the selected shape must assure 
a good approximation of the function for an arbitrary law of variation. A tabular representa- 
tion of the function with its values determined between the interpolation nodes will satisfy 
this condition. 
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To solve the nonlinear boundary-value problem (i)-(3) we use an implicit four-point dif- 

ference scheme for a quasilinear equation with the order of approximation O(T + h e ) and an 
iteration method of solving the system of difference equations for going from one time layer 

to another. 

On the segments 0 ~x ~6 and 0 ~ t ~t e we introduce uniform meshes with the nodes 
xi = (i -- l)h, i = i, 2 .... , I, tj = jT, j = i, 2, ..., J, h = 6/(I -- i), T = te/J. Then 
the following system of equations will be the difference analog of the problem (1)-(3) 

s + ,  s + l  s + l  
( T i ,__  TI j s+l ) 

Taj--Tl i_l  2 rlXl j (Zj Tlj  + ~j 
qc~jp "c h h 

s@ 1 s +  I s +  1 s -u 1 

T i + l j - - T i i  T i j - -  Ti--li Td  - -  Ti i - i  1 s ~(i-U 
Cij D -- 

h h h (7) 
S ~ I  S + I  s~-I 

�9 T u - - T I ] _ ,  2 ( T I I - - T I - I ]  s-t-1 3 
- -  - [3s glj + tp~ , r2c1~9 x h - -  r . ) ~ _ ~  h ,. 

i = 2 ,  3 . . . . .  I .... 1, ] = 1 ,  2 . . . . .  J, 

where 

5 S 

1 (T J+T, 1 cij : c  ; ~ . o =  s ' " ; 
2 , 2 

O 

T i o  : T O ( x i ) ;  Ti.i = T i i - l .  

The superposed superscripts denote the number of the iteration at which the quantity noted is 
evaluated. 

The system of difference equations (7) is solved by using an iteration process and the 
factorization method at each time spacing. For the majority of dependences Z(T), c(T) the 

iteration process converges rapidly, and two to three iterations are sufficient. 

Correspondingly, we obtain for the functional (5) 

i K 
S-- 

~r e \9 

(s) 

h - - t  l 

w h e r e  Tk ;  e q u a l  t h e  v a l u e s  o f  t h e  mesh f u n c t i o n s  TLj a t  t h e  n o d e s  t o  w h i c h  Xk and t ;  a g r e e ,  
w h i l e  t h e y  a r e  e v a l u a t e d  by i n t e r p o l a t i o n  when t h e r e  i s  no s u c h  a g r e e m e n t .  

To e v a l u a t e  t h e  g r a d i e n t  o f  t h e  f u n c t i o n a l  (8) we u s e  t h e  m e t h o d  p r o p o s e d  i n  [11]  f o r  
f i n d i n g  t h e  g r a d i e n t  o f  s i m i l a r  f u n c t i o n a l s  f o r  l i n e a r  h e a t  c o n d u c t i o n  p r o b l e m s .  E x t e n d i n g  
t h i s  me thod  t o  t h e  c a s e  o f  t he  n o n l i n e a r  p r o b l e m ,  we o b t a i n  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s  
a d j o i n t  to  ( 7 ) :  

r19 k+" (b.,j -- 2rxbls) 2aj blj + OS 
7 -  

@ ^ - -  
P )~J b OS 
T (c~+'bii+i--c+b~'J)-----~( 2 (b3j-- ..s) . *qi I~ " - - 2 q b l j ) +  , - - , ~  w"-~ OTij 

0 __ Ci_~.bi,] ) ~_ ~,,/+/" ~7---I] (h i ]  __ bi i/,),-~ aS "~ (qT+lb~/+ 1 ---~ (b*+U-bu)  tz 2 - OT~,, " (9)  

i = 3 , 4  . . . . .  1 - - 2 ,  

__ 9_9 (C/_.U+I bI- l i+t - -  C+l_llbI-u) -- 
T, 

~+--ii (2ribt] --bi_ U) L72i  OS 
h2 h2 (b~_l: -- bi_o :) "k , 

" OTt-,i  

~,T--1] (2g,2bi ~ - -  hi--fi) - -  2~] bzf + aS 
r~p (ctT+lbli+l - -  c+I]bl) = hz h OTIi~ 

T, 
] = 0 ,  1 . . . . .  d, b~.r+l=O, i = l ,  2 . . . . .  I, 
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Fig. io Convergence of the solution of the domain boundaries: 
i) desired dependence ~(T); 2) solution; 3) solution for d = 2; 

4) d -- 3; 5) d is determined at the initial spacing (a); i) 
desired dependence I(T); 2) solution; 3) solution for f'(T N) = 
0; 4) f" = 0; 5) f'" = 0 (b); I, W/InK; T~ 

where 

~+ : "~U + 0 5 (Ti: -- Ti-~/) );/; E~ : ),i: -- 0.5 (Tij -- Ti+l:) )~/; 

c~ = cu + 0.5 (Ti: - -  Ti:-,)c~/,  c,7 = vii - -  0,5 (T~: - -  T i : - , )  cii: 

Here i* m'j and c'''13 are the derivatives with respect to the temperature aL the points 0.5(Tij = 

Ti+lj) and 0.5(Tij + Tij_~), respectively. 

Equations (9) are linear in bij and can be solved by the factorization method. The com- 
ponents of the gradient are determined in terms of the solution of the adjoint equation by 
the following expressions: 

J I--I  

_ _ _  ( 0 . , : :  ~ 0> ,~ -1 :  , OS 1 , ~  '~-~ b~: O~._,: T~_~: - = - -  , " Ti: w 

/ = 1  i = 2  L 

0}~:_~: (T :_1 : - -  TIi)} , + O)~i]o~.__~ Ti+Ii - -  2hba: ~0)'~: (T~: - -  T~:) . . . .  + 2r.,b:: --0).~ 

( l o )  
a = l ,  2 . . . . .  N, 

J l - - 1  

OS p -Z { ,~'2 bi j (TiJ-]  - -  Tij) - -  -b f l b l j ( T l j - i  - -  Tlj) ~ "~- 
7~ O c u  . Ocu 

OCra T j =  l = OCm 

acz] I + r~b:/(TI:_I - -  T::) - ~ c ~ J  ' m = l, 2 . . . . .  M. 

Therefore, the determination of the gradient of the functional of the quadratic residual 
8) reduces to the solution of the system of difference equations (7) of the direct problem, 

the solution of the adjoint system of equations (9), and the evaluation of the component of 
the gradient by means of (i0). The computation time on an electronic computer here increases 

by more than twofold as compared to the time to solve the direct problem for an iteration 
residual equal to 0.017o of the magnitude of the temperature interval. 

The presence of such an economical method of determining the gradient permits efficient 
utilization of different iteration methods of gradient type for minimization of the functional 
(8). Testing the gradient methods, the method of steepest descent, and the method of con- 
jugate gradients on model problems to determine the temperature dependence of the coefficient 
of heat conduction showed that the method of conjugate gradients yields the best results. 
However, it should be noted that uniform convergence of the solution at the domain boundaries 
is not assured in all cases. The nature of the solution (curve 2) at the upper boundary of 
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F i g .  2. R e s t o r a t i o n  of  t h e  dependence  t (T )  by t he  method of  
s u c c e s s i v e  m i n i m i z a t i o n :  1) d e s i r e d  dependence ;  2) s o l u t i o n ;  
3) r e s u l t s  o f  a c o m p u t a t i o n  f o r  N = 2; 4) f o r  N = 9. 

t he  domain,  o b t a i n e d  when u s i n g  l i n e a r  i n t e r p o l a t i o n  of the  f u n c t i o n  X(Xl, ),2, . . . ,  X N) b e -  
tween n o d a l  p o i n t s  i s  d i s p l a y e d  i n  F ig .  l a .  U t i l i z a t i o n  of  h i g h e r - o r d e r  i n t e r p o l a t i o n  
( q u a d r a t i c ,  c u b i c ,  and by the  method of  smooth e x e c u t i o n )  does no t  r e s u l t  in  improvement  of  
the results. 

As an analysis of the computing process showed, such a behavior of the solution is asso- 
ciatedwiththe fact that the components of the gradient of the functional (8), corresponding 

to the boundary nodes of the function I(%~, %2, .... XN), are several times less (two and 
more times for linear interpolation) than the components corresponding to the internal nodes. 
This latter is due, as before, to the fact that for the boundary nodes the tabulated function 

Ok dT I(11, 12, ..., IN) of the quantity Ja-~-~ is less than for the internal nodes (two times 

in the case of linear interpolation, and eight times by the method of smooth execution), and 

is also associated with the nature of the temperature field in the specimen, with the system 

of initial data and the magnitude of the spacing for the tabulated representation of the func- 
tion %(T). Consequently, in minimizing the functional (8) the boundary points of the functions 

being sought %(~, %z, -.', %N) move considerably more slowly to the solution than do the 
others, which indeed causes distortion of the solution being obtained at the domain boundaries. 

This is also confirmed by the results of computations for the cases when the boundary compo- 

nents of the gradient are multiplied by the constant d during minimization. Results for d = 2 
and 3, respectively, are shown by curves 3 and 4 in Fig. in, and by curve 5 for the case when 

d is determined from the condition of equality of the gradient components at the boundary and 
nearby internal points at the initial step of the minimization, where the initial approxima- 
tion should be sufficiently remote from the desired solution so that local singularities 

would not exert influence on the magnitude of d. Such a definition of the coefficient d takes 
account of the influence of all the factors mentioned on the boundary component and, as is seen 

from the results presented, assures a substantial improvement in the solution at the boundaries. 
This method is certainly of a purely phenomenological nature and cannot always be effective. 

Consequently, the results being obtained must be checked during its utilization, for instance, 

by solving for different initial approximations on different sides of the solution being ob- 
tained. It should be noted that such a confirmation of the solution is desirable even when 
using any other method. 

Methods of improving the convergence of the solution by introducing constraints on the 

behavior of the function to be sought at the domain boundaries (first, second, or third deriva- 
tives equal to zero) were also considered. The results of computations, presented in Fig. Ib, 
show that these constraints diminish but do not eliminate distortions of the solution. 

The most effective elimination of the nonuniform convergence of the solution was given 
by utilization of the successive minimization process proposed in [2], which consists of the 
successive increase in the number of parameters by which the functional is minimized, which 
corresponds to a 1.5-2 times increase in the Dumber of nodes, starting with two nodes, say, 
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F i g .  3, E r r o r s  i n  r e s t o r a t i o n  o f  ~ (T) :  i )  a t  e x a c t  v a l u e s  of  
Te(Xk, t ) ;  2) a t  rounded  o f f  v a l u e s  t o  0 and 5~ 3) f o r  a s i m u l -  
t aneous  d e t e r m i n a t i o n  o f  I ( T )  and c ( T ) .  Along the  o r d i n a t e  a x i s  
A%, W/mK. 

under the conditions of this problem. Improvement in the convergence is here achieved by 
tha fact that the initial minimization in a coarse mesh will assure a good initial approxima- 
tion for minimization on a finer mesh, Minimization is accomplished at each stage by the 
method of conjugate gradients by using linear interpolation of the function being sought and 
by doubling the boundary components of the gradient. 

Results of restoring a very complex function I(T) are shown in Fig. 2 (compared to the 
example presented in Fig. i, a deep trough in the function is introduced at T = 873~ from 
data on the temperature at ten points arranged uniformly over the thickness of the specimen. 
Presented here are certain intermediate results illustrating the successive minimization pro- 
cess. The good convergence of the solution at both the domain boundaries and at sites of a 
rapid change in the function should be noted. Errors in the restoration of ~(T) when solving 
the problem at exact values of the temperature (i), at values rounded off to 0 and 5~ (2), 
as well as the boundary of the 5% error of I(T) and (T) are shown in Fig. 3. The magnitudes 
of the root-mean=square errors for the cases mentioned are 1.7, 2.7 and 2.9%, respectively, 
relative to the mean value of I in the 273-1278~ range. 

NOTATION 

x, coordinate; T, temperature; t, time; p, density; c, specific heat; l, coefficient of 
heat conduction; ~, plate thickness; ~(t), ~(t), ~ (t), ~(t), functions; r~, r2, coefficients; 
~k, weight factors; h, T, mesh spacings in the space and time coordinates; T e, experimental 
values of the temperature. 
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PROCEDURE FOR CALCULATING A CONDUCTIVE HEAT EXCHANGER 

V. F. Stepanchuk, A. E. Shilo, 
V. V. Kozhushko, and E. G. Zavadovskii 

UDC 621.1.016.4 

In a number of devices a fluid is heated as it flows through a porous wall or a metal 
wall with a high thermal conductivity which has channels containing the flowing fluid. There 
naturally arise problems of finding the temperature distribution in the material of such a 
wall heat exchanger, the temperature change of the flowing fluid, and the amount of heat 
transferred for given geometric parameters of the wall heat exchanger and given values of the 
initial temperature and the flow rate of the fluid. To simplify the problems we make the 
following assumptions: i) the thermal and physical properties and the heat-transfer char- 
acteristics are constants; 2) end effects related to the finite dimensions of the wall heat 

exchanger can be neglected, i.e~, we assume an infinite porous wall; 3) heat transfer through 
the skeleton of the wall is by conduction only in the direction normal to the boundary sur- 
faces, i.e., the temperature gradient in the transverse direction can be neglected. This con- 
dition holds when the temperature difference between the central part of individual elements 
of the skeleton and the channel surface is small in comparison with the temperature dif- 
ference between the channel surface and the moving fluid, i.e., the thermal resistance to 
conduction through the heat-exchanger skeleton and the thermal resistance to heat transfer 
to the moving fluid are controlling. This assumption will be satisfied sufficiently rigorously 
if the Biot number Bi = eh/% determined in the heat-exchanger skeleton is smaller than unity. 
[i]. It is easy to verify that for metal heat exchangers this assumption is satisfied over 
reasonable variations of the heat-transfer coefficient ~, the thermal conductivity %, and a 
characteristic internal dimension h- the distance between centers of the openings; 4) heat 
conduction in the fluid can be neglected; this assumption is obvious for turbulent flow, but 

even for laminar flow, taking account of the fact that the thermal conductivity of a fluid 
is an order of magnitude smaller than that of the heat-exchanger material, heat conduction in 
the fluid can be neglected. 

Thus, in our heat-exchanger model we assume that heat is transferred by conduction through 
the skeleton of the material, and by convection to the fluid. Then the system of equations 
for the temperature distribution (a one-dimensional problem for the material of the device) 
can be formulated in the following way for a l-m 2 cross section of the heat exchanger (Fig. i). 

The amount of heat transferred to the flowing fluid in a part dx during a time dT is [i] 

dQ = Zf d~t~- dxd~, (1) 
dx ~ 

but on the other hand this heat can be determined from the heat-transfer equation 

dQ = ~P (tu --/F') dxdz. (2) 

F i n a l l y ,  t h e  amount of  h e a t  go ing  i n t o  h e a t i n g  o f  t h e  f l u i d  i s  

dQ = p (1 - - f )ucp dtF dxdT. (3) 
dx 

By e q u a t i n g  ( 1 ) ,  ( 2 ) ,  and (3 ) ,  we o b t a i n  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s :  

Z/ditM = a P  (t,, -- t F ), (4) 
dx 2 
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